
LECTURE 4.

• Equivalence relations

• Equivalence classes

• Partial orders



Definition.

Suppose R is an equivalence relation on X. For every element 
𝑎 ∈ 𝑋 the equivalence class of a is the set 𝑎 𝑅 = 𝑥 ∈ X 𝑎𝑅𝑥 .

Examples.

1. 2 ≡5
= {5𝑘 + 2|𝑘 ∈ ℤ} – the set of all integers that yield 2 

as the remainder of division by 5. Notice that 
2 ≡5

= 7 ≡5
= −3 ≡5

etc.

2. The equivalence class of {1} of the equipotency relation on 
2ℝ is the set of all single-element subsets of ℝ. In this case 
every equivalence class is a set of sets. Writing [5] makes no 
sense in this context. 5 is not an element of 2ℝ.

3. Equivalence classes of ∥ are called directions. Every line 
parallel to a given line l shares its direction with l.

When it is clear from the context what relation we have in mind 
we drop the label of the relation in 𝑎 𝑅 and we write simply [a].



Definition.

A family of subsets 𝐴𝑖 𝑖∈𝐼 of X is called a partition of X iff

• (∀𝑖, 𝑗 ∈ 𝐼)(𝑖 ≠ 𝑗 ⇒ 𝐴𝑖 ∩ 𝐴𝑗 = ∅) (the sets are pairwise disjoint)

• 𝑖∈𝐼𝐴𝑖ڂ = 𝑋 (the family covers X)

For example, the set of all lines passing through the origin is NOT a 
partition of the plane because they have a common point (0,0). Since 
(0,0) is the only common point we can construct another family of 
sets: the set of all lines passing through the origin, each without the 
point (0,0), and the single element set {(0,0)}.

The set of all lines parallel to the horizontal axis OX is a partition of 
the plane.



Lemma.

If R is an equivalence relation on X, then 

for every 𝑎, 𝑏 ∈ 𝑋, 𝑎 = 𝑏 iff 𝑎𝑅𝑏.

Proof. ⇒
Since 𝑏 ∈ 𝑏 and 𝑎 = 𝑏 , 𝑏 ∈ [𝑎] which means 𝑎𝑅𝑏.

(⇐) Since 𝑎𝑅𝑏, 𝑏 ∈ [𝑎]. For every 𝑥 ∈ 𝑏 , 𝑏𝑅𝑥. From transitivity of 
R we obtain that 𝑎𝑅𝑥 𝑖. 𝑒., 𝑥 ∈ [𝑎]. This means 𝑏 ⊆ 𝑎 . In the 
same way we can show that 𝑎 ⊆ 𝑏 .



Theorem.

For every equivalence relation R on X the set of all equivalence 
classes of R is a partition of X.

Proof.

For every 𝑎 ∈ 𝑋, 𝑎 ∈ 𝑎 𝑅 hence, X is covered by equivalence 
classes of R.

Suppose that equivalence classes are not pairwise disjoint. Then, 
there exist a and b in X such that 𝑎 ≠ [𝑏] and there exists p, 𝑝 ∈
𝑎 ∩ [𝑏]. This means 𝑎𝑅𝑝 and 𝑏𝑅𝑝. Since R is symmetric and 

transitive, we obtain 𝑎𝑅𝑏 so, by lemma, 𝑎 = [𝑏]. 
A contradiction. QED



The last theorem can be, in a sense, reversed:

Theorem.
For every partition P = 𝐴𝑖 𝑖∈𝐼 of X there exists an equivalence 
relation R on X such that P is the set of equivalence classes of R.

Proof.
Let us define a relation R as follows: 
xRy iff (∃𝑖 ∈ 𝐼)(𝑥 ∈ 𝐴𝑖  𝑦 ∈ 𝐴𝑖)

We must prove that: 

(a) R an equivalence relation

(b) { 𝑥 𝑅: 𝑥 ∈ 𝑋} = P.

(a) R is obviously reflexive (because P covers X) and symmetric. 
Suppose 𝑥𝑅𝑦 and 𝑦𝑅𝑧. Then 𝑥, 𝑦 ∈ 𝐴𝑖 and 𝑦, 𝑧 ∈ 𝐴𝑗 for some 

𝑖, 𝑗 ∈ 𝐼. Since the sets from P are pairwise disjoint, 𝑦 ∈ 𝐴𝑗 and 

𝑦 ∈ 𝐴𝑖 we get i=j which means xRz i.e., R is transitive.



(b) For every x, (∃𝑖 ∈ 𝐼) 𝑥 ∈ 𝐴𝑖. Clearly, 𝑥 = 𝐴𝑖. Hence, 
𝑥 𝑅: 𝑥 ∈ 𝑋 ⊆ P. On the other hand, given any 𝑖 ∈ 𝐼, and any 

𝑥 ∈ 𝐴𝑖, 𝐴𝑖 is the equivalence class for x, which means P ⊆
𝑥 𝑅: 𝑥 ∈ 𝑋 . QED

The remainder of this slide and the next two is just some 
propaganda. You can read it or ignore it.

FAQ 1. What is so exciting about equivalence relations?

They organize our thinking about the (mathematical) universe. 
For example we can define a relation between sets: two sets A and 
B are related iff there is a bijection (1-1 and ‘onto’ function 
mapping A onto B). Then we develop the concept of a natural 
number saying that a “number” is the common property of all sets 
in one equivalence class of this relation, or that a natural number 
IS an equivalence class of this relation. 



FAQ 2. Is it only me or is the last proof completely stupid? You 
define a relation with pre-defined equivalence classes (sets 
forming the partition) by saying that two elements are related 
whenever they belong to the same set and then you proudly 
announce that related elements belong to the same set. W.T.H. 
does it tell us about the nature of the connection between related 
elements? WTH does it tell us about Universe? It is just a formal 
trick!

This is one of many counterexamples to the excluded middle
logical principle because the answer is both YES and NO:

‘NO’ because we do not classify proofs into silly-looking and 
sophisticated but into correct and faulty. From where I stand the 
proof is correct and therefore cannot be shrugged off as ‘stupid’. 



‘YES’ because it IS only a formal trick and it doesn’t tell us a 
thing about the Universe. Rather, it tells us something about the 
way we look at the Universe. In the actual life, given a partition of 
a set we would like to discover a ‘proper reason’ for an element to 
belong to a particular class. For example you can divide people 
into those who do not contract COVID-19, those who do but 
survive and those who do and die. Of course it is useless to say 
‘the common property of humans who belong to one of these sets 
is that they do belong to the same set’, even though it does the 
trick, it defines an equivalence relation. What we are after is a 
more analytical or cause-oriented definition of the relation, like 
two people are in the same class because they share a specific 
sequence in their DNA.



PARTIAL ORDERS

Definition 1. A partial order on a set X is any relation R on X that 

is reflexive, transitive and antisymmetric. The pair (X,R) is called 

a poset (as in partially ordered set).

The concept of a partial order is modelled on the  relation (LEQ)  

for numbers or, better but less popular among the general public, 

"", the inclusion relation on 2𝑋 for some set X. "" is better 

because, one way or the other,  happens between every two 

numbers (ab or ba) and there is nothing in the definition of a 

partial order to suggest that this should be the case. The inclusion 

on the other hand does not have this property, one can easily find 

sets which are “incomparable”, like {1,2} and {1,3}, so this order 

is more ‘partial’ (‘partial’ as opposed to ‘total’).



People tend to denote partial orders by symbols whose graphical 
form implies something ‘directional’, i.e.  is better than , or 
is better than ⊥. Or the curly ≼ symbol or just plain < symbol. It 
must be clear from the context that you mean a partial order on a 
set not the usual ‘less than’ relation.



Examples.

1. EQ, the equality relation on any set X is obviously reflexive, 

transitive and antisymmetric (symmetric as well). This is a 

very egalitarian example, no element of X is ‘greater than’, or 

‘older than’ another. In other words no two different elements 

are comparable.

2. On the other extreme we have the ‘complete’ order, R=X×X, 

where everybody is ‘above’ everybody else. But, do we? Is it 

antisymmetric? NO, this is not a partial order.

3. (ℕ, |)

4. (2𝑋, ≼) with 𝐴 ≼ 𝐵 meaning that |A| ≤ |𝐵|? NO, this relation 

is not antisymmetric if 𝑋 ≥ 2.



We often illustrate posets using Hasse diagrams where elements 
of X are represented by dots or small circles, the higher the dot is 
in your picture, the higher the corresponding element of X is in 
(X, ≼). Comparable elements are supposed to be joined by lines; 
but self-loops and lines whose existence can be deduced from 
transitivity are omitted to keep the picture readable.

The Hasse diagram should not be confused with the "graph of a 
relation". In the graph we include all lines connecting related 
elements.



Example. 

The Hasse diagram for (2𝑋, ⊆) where X = {x,y,z}. Here, ovals 

representing subsets are labelled with the actual subsets and 

instead of lines we use arrows pointing from "smaller" to "larger" 

elements.

Illustration from Wikipedia



Comprehension.

1. Sketch the Hasse diagram for ({1,2,3, … , 12}, | ), where a|b

means "a divides b".

2. Let X be a set. EQ on X turned out to be both an equivalence 

relation on X and a partial order on X. Can you find other 

relations with this property?



Definition2. Let (X, ≼) be a poset, p ∈ 𝑋.

(a) p is a largest element of (X, ≼) iff ∀𝑥 ∈ 𝑋 𝑥 ≼ p

(b) p is a smallest element of (X, ≼) iff ∀𝑥 ∈ 𝑋 𝑝 ≼ 𝑥

(c) p is a maximal element of (X, ≼) iff 

∀𝑥 ∈ 𝑋 (𝑝 ≼ 𝑥 => 𝑝 = 𝑥)

(d) p is a minimal element of (X, ≼) iff 

∀𝑥 ∈ 𝑋 (𝑥 ≼ 𝑝 => 𝑝 = 𝑥)



You should notice that largest means “everybody else is below 

p” while maximal means “there is nobody above p”. There is a 

difference if the order is partial. Similar remark applies to 

smallest and minimal.

Notice that in (𝑋, 𝐸𝑄) every element is both minimal and 

maximal and there is no smallest and no largest element – unless 

X is a one-element set, in which case the only element of X is 

minimal, maximal, smallest and largest at the same time.

Comprehension.

1. Prove that the largest element in a poset (if there is one) is the 

only maximal element.

2. Is it true that, if a poset has exactly one maximal element m

then m is the largest element as well?


